Increasing the Robustness of Magnetic Levitation System by Using PID-Sliding Mode Control
نویسندگان
چکیده
This paper presents regulation and tracking control design for a magnetic levitation system (Maglev). First, the nonlinear dynamic model of magnetic levitation system was built. Second, a sliding mode control (SMC) is constructed to compensate the uncertainties occurring in the magnetic levitation system. The control gains were generated mainly by experimental method. Next, a composite controller consisting of a PID plus a SMC algorithm was proposed to enhance overall tracking performance. The effectiveness of controllers was verified through experiment results.
منابع مشابه
H Control and Sliding Mode Control of Magnetic Levitation System
In this paper, H disturbance attenuation control and sliding mode disturbance estimation and compensation control of a magnetic levitation system are studied. A magnetic levitation apparatus is established, and its model is measured. Then the system model is feedback linearized. A H controller is then designed. For comparison, a sliding mode controller and a PID controller also were designed. S...
متن کاملGovernor design for hydropower plants by intelligent sliding mode variable structure control
This work proposes a neural-fuzzy sliding mode control scheme for a hydro-turbine speed governor system. Considering the assumption of elastic water hammer, a nonlinear mode of the hydro-turbine governor system is established. By linearizing this mode, a sliding mode controller is designed. The linearized mode is subject to uncertainties. The uncertainties are generated in the process of linear...
متن کاملTuned Parameters of PID for Optimization of Losses in Magnetic Levitation System
In this paper a new method is proposed for determining PID controller parameters in order to decrease losses in levitation system of magnetic trains. It is assumed that this system is a hybrid system and it consists of electric and permanent magnet. For optimization of losses initially AC losses of magnetic levitation system are calculated. Linear model of levitation system as well as modeling ...
متن کاملLoad Frequency Control in Power Systems Using Multi Objective Genetic Algorithm & Fuzzy Sliding Mode Control
This study proposes a combination of a fuzzy sliding mode controller (FSMC) with integral-proportion-Derivative switching surface based superconducting magnetic energy storage (SMES) and PID tuned by a multi-objective optimization algorithm to solve the load frequency control in power systems. The goal of design is to improve the dynamic response of power systems after load demand changes. In t...
متن کاملOffline Auto-Tuning of a PID Controller Using Extended Classifier System (XCS) Algorithm
Proportional + Integral + Derivative (PID) controllers are widely used in engineering applications such that more than half of the industrial controllers are PID controllers. There are many methods for tuning the PID parameters in the literature. In this paper an intelligent technique based on eXtended Classifier System (XCS) is presented to tune the PID controller parameters. The PID controlle...
متن کامل